MeloMelo
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
  • Home
  • Model
    • Blood Cell
    • INBreast
    • MedMNIST
      • AdrenalMNIST3D
      • DermaMNIST
      • FractureMNIST3D
      • NoduleMNIST3D
      • OCTMNIST
      • OranAMNIST
      • OrganMNIST3D
      • PathMNIST
      • PneumoniaMNIST
      • RetinaMNIST
      • TissueMNIST
      • VesselMNIST3D
    • NIH Chest X-ray
    • OAI

Abstract

The common practice in developing computer-aided diagnosis (CAD) models based on transformer architectures usually involves fine-tuning from ImageNet pre-trained weights. However, with recent advances in large-scale pre-training and the practice of scaling laws, Vision Transformers (ViT) have become much larger and less accessible to medical imaging communities. Additionally, in real-world scenarios, the deployments of multiple CAD models can be troublesome due to problems such as limited storage space and time-consuming model switching. To address these challenges, we propose a new method MeLo (Medical image Low-rank adaptation), which enables the development of a single CAD model for multiple clinical tasks in a lightweight manner. It adopts low-rank adaptation instead of resource-demanding fine-tuning. By fixing the weight of ViT models and only adding small low-rank plug-ins, we achieve competitive results on various diagnosis tasks across different imaging modalities using only a few trainable parameters. Specifically, our proposed method achieves comparable performance to fully fine-tuned ViT models on four distinct medical imaging datasets using about 0.17% trainable parameters. Moreover, MeLo adds only about 0.5MB of storage space and allows for extremely fast model switching in deployment and inference.

Model

model image

SZ Chest X-ray

Task:Tuberculosis Diagnosis

ViT:base-ImageNet

Rank:4

model image

Bloodcell

Task:Blood Cell Identification

ViT:base-ImageNet

Rank:4

model image

NIH Chest X-ray

Task:Thoracic Disease Diagnosis

ViT:base-ImageNet

Rank:4

model image

INBreast

Task:Breast Malignancy Diagnosis

ViT:base-ImageNet

Rank:4

我的页面

这是一个自定义的 Vue 组件

Hello from MyComponent!

Learning Rate1e-5
Training Epoch100
Convergence Epoch40
Last Updated:
Contributors: So-cean
Prev
Home