MeloMelo
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
  • Home
  • Model
    • Blood Cell
    • INBreast
    • MedMNIST
      • AdrenalMNIST3D
      • DermaMNIST
      • FractureMNIST3D
      • NoduleMNIST3D
      • OCTMNIST
      • OranAMNIST
      • OrganMNIST3D
      • PathMNIST
      • PneumoniaMNIST
      • RetinaMNIST
      • TissueMNIST
      • VesselMNIST3D
    • NIH Chest X-ray
    • OAI

INBreast

Dataset Information

INBreast dataset includes 410 digital mammography images obtained from 115 patients, comprising 339 non-malignant and 71 malignant cases. The diagnostic task follows the BI-RADS assessment of masses to classify these mammography images into non-malignant and malignant categories. BloodCell dataset consists of 12,500 augmented images representing four subtypes of blood cells: Eosinophil, Lymphocyte, Monocyte, and Neutrophil. The objective of this dataset is to accurately identify the respective types of blood cells. NIH Chest X-ray 14 dataset contains 112,120 frontal-view chest X-ray images annotated with 14 common thoracic diseases. The task involves diagnosing the diseases present in each chest X-ray image.

Task: Binary-Class

Labels:

0: normal, 1: lesion

Samples:

  • Train: 90
  • Validation: 0
  • Test: 25

Experiment Parameter

Learning Rate: 3e-4

Training Epoch:

Other Details: 5折 50/折

Last Updated:
Contributors: So-cean
Prev
Blood Cell
Next
MedMNIST