MeloMelo
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
  • Home
  • Model
    • Blood Cell
    • INBreast
    • MedMNIST
      • AdrenalMNIST3D
      • DermaMNIST
      • FractureMNIST3D
      • NoduleMNIST3D
      • OCTMNIST
      • OranAMNIST
      • OrganMNIST3D
      • PathMNIST
      • PneumoniaMNIST
      • RetinaMNIST
      • TissueMNIST
      • VesselMNIST3D
    • NIH Chest X-ray
    • OAI

DermaMNIST

Dataset Information

The DermaMNIST is based on the HAM10000, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. The dataset consists of 10,015 dermatoscopic images categorized as 7 different diseases, formulized as a multi-class classification task. We split the images into training, validation and test set with a ratio of 7:1:2. The source images of 3×600×450 are resized into 3×28×28.

Task: multi-class

Labels:

0: actinic keratoses and intraepithelial carcinoma, 1: basal cell carcinoma, 2: benign keratosis-like lesions, 3: dermatofibroma, 4: melanoma, 5: melanocytic nevi, 6: vascular lesions

Samples:

  • Train: 7007
  • Validation: 1003
  • Test: 2005

Experiment Parameter

Learning Rate: 3e-4

Training Epoch: 100

Convergence Epoch: 25

Last Updated:
Contributors: So-cean
Prev
AdrenalMNIST3D
Next
FractureMNIST3D