MeloMelo
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
Home
  • Blood Cell

  • INBreast

  • MedMNIST

    • AdrenalMNIST3D
    • DermaMNIST
    • FractureMNIST3D
    • NoduleMNIST3D
    • OCTMNIST
    • OranAMNIST
    • OrganMNIST3D
    • PathMNIST
    • PneumoniaMNIST
    • RetinaMNIST
    • TissueMNIST
    • VesselMNIST3D
  • NIH Chest X-ray

  • OAI

About
  • Home
  • Model
    • Blood Cell
    • INBreast
    • MedMNIST
      • AdrenalMNIST3D
      • DermaMNIST
      • FractureMNIST3D
      • NoduleMNIST3D
      • OCTMNIST
      • OranAMNIST
      • OrganMNIST3D
      • PathMNIST
      • PneumoniaMNIST
      • RetinaMNIST
      • TissueMNIST
      • VesselMNIST3D
    • NIH Chest X-ray
    • OAI

NoduleMNIST3D

Dataset Information

The NoduleMNIST3D is based on the LIDC-IDRI, a large public lung nodule dataset, containing images from thoracic CT scans. The dataset is designed for both lung nodule segmentation and 5-level malignancy classification task. To perform binary classification, we categorize cases with malignancy level 1/2 into negative class and 4/5 into positive class, ignoring the cases with malignancy level 3. We split the source dataset with a ratio of 7:1:2 into training, validation and test set, and center-crop the spatially normalized images (with a spacing of 1mm×1mm×1mm) into 28×28×28.

Task: binary-class

Labels:

0: benign, 1: malignant

Samples:

  • Train: 1158
  • Validation: 165
  • Test: 310

Experiment Parameter

Learning Rate: 1e-5

Training Epoch: 100

Convergence Epoch: 40

Last Updated:
Contributors: So-cean
Prev
FractureMNIST3D
Next
OCTMNIST